References:
1. R.F. Donnelly et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. Journal of Controlled Release 147 (2010) 333–341
2. S. Sharma, et al., Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring, Sensing and Bio-Sensing Research (2016), http://dx.doi.org/10.1016/j.sbsr.2016.10.004
3. R.F. Donnelly et al. Evaluation of the clinical impact of repeat application of hydrogel-forming microneedle array patches. Drug Delivery and Translational Research (Feb 2020). https://doi.org/10.1007/s13346-020-00727-2
4. E. Kim et al., Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development, EBioMedicine (2020), https://doi.org/10.1016/j.ebiom.2020.102743
5. M. R. Prausnitz, Engineering Microneedle patches for vaccination and drug delivery to skin. Annu. Rev. Chem. Biomol. 8, 177–200 (2017).
6. J. W. Lee, J. H. Park, M. R. Prausnitz, Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113–2124 (2008).
7. Banzhaf CA, Wind BS, Mogensen M, Meesters AA, Paasch U, Wolkerstorfer A, Haedersdal M. Spatiotemporal Closure of Fractional Laser-Ablated Channels Imaged by Optical Coherence Tomography and Reflectance Confocal Microscopy, Lasers Surg Med. 2016 Feb;48(2):157-65